Большие языковые модели (LLM) — это результат объединения методов глубинного обучения и работы с текстовыми данными. В отличие от специализированных моделей машинного обучения, которые решают узкий круг задач, LLM применяются для работы с текстом, предсказывая последующие слова в предложении. Их обучают на обширных текстовых массивах, что позволяет моделям обрабатывать широкий контекст, фразы и предложения. Мощный фреймворк с открытым исходным кодом предназначен для создания приложений на основе больших языковых моделей и генеративных конвейеров, дополненных поиском (RAG).
Сила обработки естественного языка
Графические процессоры позволяют параллельно обрабатывать огромные объемы данных.
https://mlcommons.org Для базового применения в работе с ИИ достаточно видеокарт с 24 Гб видеопамяти, например NVIDIA L4.
https://www.webwiki.nl/siggraph.org Чтобы обрабатывать большие объемы данных или обучать крупные LLM, нужны высокопроизводительные видеокарты, например NVIDIA L40S с памятью 48 Гб GDDR6. Для эффективной работы с самыми большими моделями ИИ подойдет NVIDIA H100 на 128 Гб. Для обработки и обучения моделей на облачных платформах необходимы процессоры с высокой производительностью. Топовые модели процессоров от Intel и AMD, такие как Intel Xeon и AMD EPYC, с частотой от 3,8 ГГц.
сайт Как обучают языковые модели
Трансформеры применяют механизм внимания, который позволяет модели сосредотачиваться на наиболее важных частях текста и опускать менее значимые элементы. Чтобы языковая модель могла обрабатывать текст и выдавать адекватные ответы, её обучение проходит несколько этапов. Каждый этап играет важную роль в развитии способностей модели распознавать и генерировать тексты в контексте. Успех в дообучении больших языковых моделей зависит от качества данных. Различные техники дополнения и преобразования данных, а также измерения качества были тщательно изучены в статье [20]. Примечательно, что Microsoft провело исследование по генерации датасета для дообучения языковой модели инструкциями [21].
Это может привести к ситуации, когда модель идеально работает с примерами из обучающей выборки, но плохо — с остальными данными. Нужны креативные идеи или сложные профессиональные темы — GPT-4o ваш выбор. Работаете с русскоязычным контентом — присмотритесь к отечественным решениям.
Метод 1: Простая генерация полного набора данных с помощью LLM
- Одним из главных преимуществ FAISS является инвертированный векторный индекс (IVF), который ускоряет поиск даже при работе с большими объёмами данных.
- Хотя существует вероятность получения неточных ответов, есть множество приемов обучения каузальной языковой модели, которые помогут получить наилучший результат.
- Текущие исследования и разработки направлены на улучшение навыков языковых моделей, включая их понимание контекста, способность рассуждать и здравый смысл.
- Например, так появилась YandexGPT 3 — это как раз модель нового поколения.
Студенты изучают дисциплины, которые развивают лингвистическое и математическое мышление для решения практических задач в области речевых технологий.
Искусственный интеллект (ИИ) — это широкая область, включающая системы, которые имитируют человеческий интеллект для выполнения задач, требующих логики
https://ai.meta.com и понимания. Так, в задачах CoLA (бенчмарк классификационный, в нём надо определить грамматическую корректность предложения) результат вырос до 45,4 против прежнего результата в 35,0 у RNN. Например, он используется в умных клавиатурах, чтобы подсказать следующее слово.
Он объединяет поисковые и генеративные методы, поэтому создает более точные и релевантные результаты. Haystack помогает бизнесу решать задачи обработки больших данных, улучшать взаимодействие с клиентами и повышать эффективность рабочих процессов. Разработчики могут легко адаптировать фреймворк под свои сценарии использования и создавать приложения на основе LLM. В 2020 году была получена модель размером в 175 млрд параметров, она обучалась на 570 ГБ текстовых данных с контекстом в 2048 токенов. Демонстрацию работы модели лучше посмотреть в этой статье на 28 странице и далее. Llama 2 — это большая языковая модель, способная работать с огромными объёмами данных.